Production of ²⁶⁰Lr and ²⁵³Fm via the 3n-Exit Channel J.B. Patin, J.L. Adams, K.E. Gregorich, M.R. Lane, C.A. Laue, D.M. Lee, C.A. McGrath, D.A. Strellis, R. Sudowe, E.R. Sylwester, P.A. Wilk, D.C. Hoffman 260 Lr (3.0 min, 8.030 MeV-α) was produced by the 248 Cm(15 N,3n) reaction and 253 Fm (3.0 day, 6.943 MeV-α) was produced by the 238 U(18 O,3n) reaction in an attempt to examine the 3n-exit channel as a possible method for the production of neutronrich isotopes near the stable deformed shell at N=162, Z=108. K. Eskola et.al.¹ previously reported the production cross section for the $^{248}Cm(^{15}N,3n)$ reaction at 78 MeV to be 2 nanobarns (nb). In our experiment, 76.5 and 79.2 MeV ^{15}N projectiles were used to produce ^{260}Lr , which was then detected by α and SF activity in our rotating wheel system. From the measured 8.030 MeV α -activity and assuming a 100% α -branch with a 3-minute half-life, we determined the production cross section of ^{260}Lr to be 1.8 \pm .8 nb in the 76.5 MeV reaction and 2.6 \pm 1.1 nb in the 79.2 MeV reaction. Figure 1 shows our cross section results plotted together with the literature value¹ and theoretical predictions. Our results are consistent with the previously reported literature value. In the second reaction, ¹⁸O was run at several energies to measure the excitation function for the 3n-exit channel. A gold catcher foil was placed directly behind the 238U target to collect all of the recoiling products. According to previous calculations², the collection efficiency of the catcher foil should be nearly 100%. irradiating the target for eight hours, the irradiated gold catcher foil was removed and dissolved in aqua regia. The resulting solution passed through an AG1-X8 anion exchange resin (200-400 mesh) column. The trivalent actinides passed through, while the gold, higher valent actinides and reaction products sorbed on the The trivalent fermium fraction was collected and dried on a Pt disk and counted with a silicon solid-state alpha-spectrometer system. In one circumstance, the trivalent actinide fraction was sorbed on a Dowex 50-X4 cation exchange resin (200-400 mesh) column and eluted with 0.5 M α -hydroxyisobutyrate at a pH of 3.38 to successfully separate the desired fermium fraction from the rest of the trivalent actinides. The resulting fermium fraction was collected and dried on a Pt disk and counted with our silicon solid-state alpha-spectrometer system. Analysis of the α -data from these samples showed no detectable ²⁵³Fm but, ²⁵²Fm (1.058 day, 7.039 MeV- α) was detected. However, the ²⁵²Fm cross section at 95 MeV was nearly a factor of 3 smaller then the previously reported value of 520 nb at 94 MeV³. This may indicate that the effective thickness of the ²³⁸U target was less than determined initially. New experiments on the $^{248}Cm(^{^{15}}N,3n)^{^{260}}Lr$ and $^{^{238}}U(^{^{18}}O,3n)^{^{253}}Fm$ reactions as well as new reactions $^{^{238}}U(^{^{22}}Ne,3n)^{^{257}}No$ and $^{^{249}}Bk(^{^{18}}O,\alpha 2n)^{^{261}}Lr$ are planned for the future. ## **Footnotes and References** - Eskola, K., Eskola, P., Nurmia, M., Ghiorso, A., Phys. Rev. C 4, 632 (1971). - 2. Leyba, J.D., LBL Report LBL-29540 (1990). - 3. Donets, E.D., Shchegolev, V.A., Ermakov, V.A., Sov. J. Nucl. Phys. **2**, 723 (1966) Fig. 1. Theoretical excitation function for the ²⁴⁸Cm(¹⁵N,3n)²⁶⁰Lr reaction. Closed circles with error bars are values from this experiment. Open circle is a reported literature value.